
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration 

 under contract DE-AC04-94AL85000.

Eric Phipps

Optimization & Uncertainty Quantification Department
Sandia National Laboratories

Albuquerque, NM USA

Analytic Sensitivity and Uncertainty
Computations in Large-Scale Applications

via Automatic Differentiation

Analytic Derivatives Enable Robust
Simulation and Design Capabilities

• We need analytic first & higher derivatives for predictive simulations
– Computational design, optimization and parameter estimation
– Stability analysis
– Uncertainty quantification
– Verification and validation

• Analytic derivatives improve robustness and efficiency
– Very hard to make finite differences accurate

•  Infeasible to expect application developers to code analytic
derivatives

– Time consuming, error prone, and difficult to verify
– Thousands of possible parameters in a large code
– Developers must understand what derivatives are needed

• Automatic differentiation solves these problems

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

What is Automatic Differentiation (AD)?

•  Technique to compute analytic derivatives
without hand-coding the derivative
computation

•  How does it work -- freshman calculus
– Computations are composition of

simple operations (+, *, sin(), etc…)
with known derivatives

– Derivatives computed line-by-line,
combined via chain rule

•  Derivatives accurate as original
computation

– No finite-difference truncation errors

•  Provides analytic derivatives without the
time and effort of hand-coding them

•  Forward Mode:
–  Propagate derivatives of intermediate variables w.r.t. independent variables forward

–  Change of variables

–  Complexity

•  Reverse Mode:
–  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards

–  Change of variables

–  Complexity

AD Takes Two Basic Forms

How is AD Implemented?

• Source transformation
– Preprocessor implements AD
– Very efficient derivative code
– Works well for FORTRAN, some C
– Extremely difficult for C++
– OpenAD, ADIFOR, ADIC (Argonne National Lab & Rice University)

• Operator overloading
– All intrinsic operations/elementary operations overloaded for AD data types
– Change data types in code from floats/doubles to AD types

• C++ templates greatly help
– Easy to incorporate into C++ codes
– Slower than source transformation due to function call overhead
– ADOL-C (TU-Desden), TFAD<> (expression templates)

• Effective implementation requires appropriate tool and approach

Sandia Physics Simulation Codes
• Element-based

– Finite element, finite volume, finite
difference, network, etc…

•  Large-scale
– Billions of unknowns

• Parallel
– MPI-based SPMD
– Distributed memory

• C++
– Object oriented
– Some coupling to legacy Fortran libraries

• We need AD techniques that fit these
requirements

Fluids Combustion

Structures
Circuits

Plasmas

MEMS

Sacado: AD Tools for C++ Applications

• Package in Trilinos 8.0

•  Implements several modes of AD
– Forward (Jacobians, Jacobian-vector products, …)
– Reverse (Gradients, Jacobian-transpose-vector products, …)
– Taylor (High-order univariate Taylor series)

• AD via operator overloading and C++ templating
– Expression templates for OO efficiency
– Application code templating for easy incorporation

• Designed for use in large-scale C++ codes
– Apply AD at “element-level”
– Manually integrate derivatives into parallel data structures and solvers
– Sacado::FEApp example demonstrates approach

Simple Sacado Example

#include "Sacado.hpp"	

// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
 ScalarT r = c*std::log(b+1.)/std::sin(a);	
 return r;	
}	

int main(int argc, char **argv) {	
 double a = std::atan(1.0); // pi/4	
 double b = 2.0;	
 double c = 3.0;	

 int num_deriv = 2; // Number of independent variables	
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
 Sacado::Fad::DFad<double> cfad(c); // Passive variable	

 // Compute function	
 double r = func(a, b, c);	

 // Compute function and derivative with AD	
 Sacado::Fad::DFad<double> rfad = func(afad, bfad, cfad);	

 // Extract value and derivatives	
 double r_ad = rfad.val(); // r	
 double drda_ad = rfad.dx(0); // dr/da	
 double drdb_ad = rfad.dx(1); // dr/db	

Simple Sacado Example

•  Global residual computation (ignoring boundary computations):

•  Time-step Jacobian computation:

•  Parameter derivative computation:

•  Hybrid symbolic/AD procedure

Differentiating Element-Based
Production Applications

The Trilinos Project

•  http://trilinos.sandia.gov
• Algorithms and enabling technologies
•  Large-scale scientific and engineering

applications
• Object oriented framework
•  “String of Pearls”
• Focus on packages

– Over 30 packages in 8.0 release
– Over 40 in development

Trilinos Packages
Objective Package(s)

Discretizations
Meshing & Spatial Discretizations phdMesh, Intrepid

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Core

Linear algebra objects Epetra, Jpetra, Tpetra

Abstract interfaces Thyra, Stratimikos, RTOp

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos

Integrating AD with Trilinos Solver
Capabilities

NOX LOCA Rythmos

Thyra::ModelEvaluator

Application::ModelEvaluator

Evaluate Jacobian

Loop over elements	
 gather element solution	
 initialize element AD types	
 evaluate templated element residual	
 extract derivative values	
 sum into global derivative matrix	
end loop	

Nonlinear Solvers

Abstract application interface

Concrete application interface

Method implementation

Steady-state mass transfer equations:

Scalability of This Approach
Scalability of the element-level derivative computation

Set of N hypothetical chemical species:

DOF per element = 4*N

Forward mode AD
✓ Faster than FD
✓ Better scalability in number of PDEs
✓ Analytic Derivative

Reverse mode AD
✓ Scalable adjoint/gradient

Si interstitial (I) (+2,+1,0,–1,–2)

Vacancy (V) (+2,+1,0,–1,–2)

VV (+1,0,–1,–2)

BI (+,0,–)

CI (+,0,-)

VP (0,–)

VB (+,0)

VO (0,–)

BIB (0,–)

BIO (+,0)

BIC

Annihilation

Annihilation

Defect reactions

QASPR
Qualification of electronic devices in hostile environments

PDE semiconductor
device simulation

Stockpile BJT

Charon Drift-Diffusion Formulation
with Defects

Defect Continuity

Include electron capture and hole capture by defect species
and reactions between various defect species

Electric potential

Electron emission/
capture

Current
Conservation for e-

and h+

Cross section

Activation Energy

Recombination/
generation source

terms

Forward Sensitivity Analysis with Rythmos
• Discretized PDE system:

•  Forward sensitivity problem

• Rythmos time integration package
–  Todd Coffey, Ross Bartlett (SNL)
–  Implicit BDF time integration method
–  Variable order, step size
–  Staggered corrector forward sensitivity

method (Barton)

Sensitivity Analysis of a Pseudo-1D BJT
•  9x0.1 micron pseudo-1D simulation
•  1384x1 quad cells, linear finite elements + SUPG
•  2 carriers + 1 potential + 36 defect species
•  108,030 unknowns on 32 processors
•  84 carrier-defect reactions
•  126 parameters for sensitivity analysis
•  AD Jacobian, parameter deriv’s
•  Base current provides observation function

Transient Base Current Radiation Pulse

Reaction Parameter Value
14 activation energy 0.09

16 cross-section 2.40E-14

46 cross-section 1.50E-15

Scaled Sensitivities Scaled Sensitivities

Unscaled Sensitivities

Transient Base Current Sensitivities

Comparison to Black-Box Finite Differences

•  Run-times:
– Forward simulation: 105 min.
– Direct sensitivities: 931 min.
– Black-box, first-order FD: ~13,000 min.

•  Direct approach more efficient
– 14x speed-up

•  Direct approach more accurate
– 1-2 correct digits w/FD
– FD requires tighter tolerances to

achieve higher accuracy
•  Direct approach more robust

– Accuracy solely dictated by time-
integration error

1st-order Finite Difference Error
1e-3 integration tolerance

1e-5 integration tolerance

Stage is Set for Model Calibration

Leveraging Template Infrastructure

• Application code templating allows easy incorporation of new AD
data types

– Second derivatives
• Sacado::Fad::DFad< Sacado::Rad::DFad<double> > 

• Sacado::Rad::ADvar< Sacado::Rad::DFad<double> > 

– Taylor polynomials
• Sacado::Tay::Taylor<double>	

– Polynomial uncertainty representations	

Uncertainty Quantification

• Quantifying uncertainties critical for predictive simulation
• Aleatory or irreducible uncertainty: “inherent randomness”

– Probability distribution representations
– Monte Carlo sampling and its many variants (e.g., LHS)
– Stochastic collocation
– Polynomial chaos and generalized polynomial chaos

• Epistemic or reducible uncertainty: “lack of knowledge”
– Set/interval representations
– Interval arithmetic
– Possibility/evidence theory
– Probability boxes

• Aleatory uncertainty for parametric uncertainty

Stochastic Galerkin Methods
(For parametric uncertainty)

• Deterministic problem (possibly after spatial discretization):

• Stochastic problem:

• Galerkin approximation:

• Most methods can be obtained by choice of approximating space
and basis (Gunzberger & Webster)

– Space of piecewise constant functions: Monte Carlo
– Space of complete polynomials of a given degree

• Lagrange interpolation polynomial basis: Stochastic collocation
• Hermite polynomial basis: Polynomial chaos
• General orthogonal polynomial basis: Generalized polynomial
chaos

• Choice of space/basis dictates structure of nonlinear problem

SG Methods via AD

• Galerkin residuals typically evaluated by quadrature
• Galerkin method can also be viewed as a projection
•  Idea:

– Given computer code to evaluate deterministic F
– Compute projection operation by operation in evaluation of F, in an

AD-like manner
– Need way to compute projections of each operation

– Worked these out for orthogonal bases (e.g., polynomial chaos)

Projections of Intermediate Operations

• Addition/subtraction

• Multiplication

• Division

• Transcendental
– Taylor series
– Differential equations

•  Implemented in a new Trilinos package called Stokhos, wrapped
by Sacado for AD

AD Polynomial Chaos for a Simple Function

• Univariate Hermite basis
• Gaussian random variable
• Degree 3, 5, 7 PC

expansion computed by
AD

SG for Implicit Systems

• Propagating polynomials forward through code provides stochastic
residuals

• For implicit systems, also need Jacobians

• Solving implicit systems via Newton’s method requires vary large
linear system solves

Summary
• Templating key to AD approach

– Simple, fast Sacado AD tools
– Apply at “element” level
– Hooks for future program

transformation

• Vertical integration of Trilinos
technologies provide remarkable
capabilities

– Efficient, accurate, robust
sensitivities

– Foundation for transient
optimization

– Potential for intrusive stochastic
Galerkin methods

– Requires all levels to be effective

